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THE ALMOST PERIODIC LYAPUNOV PROBLEMf
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Izhevsk
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The necessary and sufficient conditions for optimum generalized controls (measures) in the almost periodic
(a.p.) Lyapunov problem are presented. Some results are also presented regarding the legitimacy of
extension and the needle-sharp variation of an almost-periodic control is constructed. Extension procedures
for optimal control problems have been considered, e.g. in [1-3], and in a game-theoretic context in [4, 5].

1. Ler R" be a Euclidean n-space, | x| the norm of an element x € R” and U a compact subset of R".
Let §;(R,X) (I>0, XCR") denote the collection of all almost periodic (a.p.) functions in
Stepanov’s sense (henceforth we shall say simply “a.p. function”). We recall [6] that a locally
integrable function f: R— X belongs to S; (R, X) if, for any £ >0, its set
t+1
E,(f,e) = {tefz:.su;>-§~ \ 176+ ”c)—f(s)[ds<s}
t=R b

(E(f, &) = E; (f, £)) of e-translation numbers is relatively dense. For every />0,
S (R, X)=S8(R, X)T S (R, X), Si (R, X)C S (R, X)

so we may confine our attention to S(R, X). In addition, every function f€S(R, X) may be
associated with its Fourier series, which is conveniently expressed in complex form:

f@)~ ZF (A eirt,  F(\) = M{f(t)e-M} = ITE[;_;. ‘\ F(t) e-irt di
0

where the set A(f)={MNER:|F(\)|>0} of Fourier exponents of f (its spectrum) is at most
denumerable.
A set FCS(R, X) is uniformly a.p. if, for any £ >0, the set

N E(f, ¢)
feF
is relatively dense.

Throughout this paper Mod (A} will denote the module of a set ACR, i.e. the smallest additive
group containing A, and, if fE€ S(R, X ), then Mod (f) =Mod (A(f)) will denote the modulus of the
function f.

Let us assume that the following elements are given: the functions f, ES(R, R), g€ C(U, X)
(k=0,...,m', ..., m), aset ACR and a subset /(U)CS(R, X), called the set of (ordinary)
controls, of functions u (- ) such that Mod () CMod (A). The extremal problem
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Jo(uw () > inf, u () =1 (U)

1.1
SN0k =142, 0 om Ty (w () =0,k =m + 1, Y

m +2,...,m e (@ () = M (£ () g ( (D)) (1.2)

will be called the a.p. Lyapunov problem (cf. the Lyapunov problem in [7]) and the set D, of
controls u(-)€I(U) that satisty conditions (1.2) will be called the set of (ordinary) admissible
controls for the problem.

Remark 1.1. The results derived below can be extended to a broader class of problems with
functionals J, (u(-)) =M {@ (1, u, (1))}, where @, (1, u) is a uniformly a.p. function of t with respect
toue U.

In order to formulate and investigate a convexified problem for (1.1), (1.2), we need a few
propositions, to which we devote the next section.

2. Let frm (U) denote the linear space of Radon measures on R” whose supports are contained in
U, and rpm(U) the subset of frm(U) formed by the Radon probability measures:
N=N(R,frm(U)} the set of Lebesgue-measurable maps p:R—frm(R) such that
|}l =essupyer | n (£} (U< = [|n(t)|(U) is the variation of p.(¢)], N; the subset of N formed by the
measurable maps w: R— rpm(U). Further, let B=B(R X U, R") denote the normed linear space of
all functions ¢:RXU—R"” such that the map (—o(f,u), u€U, is measurable,
¢(t,-)EC(U)=C(U,R") for a.e. tER and there exists a function §,EL,(R, R) such that
max,ey| (¢, )| <, (¢) for a.e. tER. By a slight modification of the proof of the Dunford-Pettis
Theorem [2] one can show that N=B*, where B; = B(R x U, R) and the map ||-||,: N— R, defined
for ,EN by

o\ 2
Il = 3 |§ B (B 0 (&, w)> dt

where {¢,, 92, . . .} is a denumerable dense set of functions in B
Noslls = [ max|o@uwldn @, 5w = o 0u)@w
R ir

defines a weak norm in N. The space (N, |-||,.) is separable, the set N, C (N, ||-||,,) is convex and
compact and if p;, . € Ny, then lim; .||, — [, = 0 (we write p,— p as j— ) if and only if

lim { < () — by (B0 (6 w)y dt =0

J—o0 R

for any ¢ €B.

Definition 2.1. A map wEN is said to be a.p. if, for any function g& C(U), the map
t—(p(t), g (u)) belongs to S(R, R").

We denote the set of all a.p. maps L EN (nE€ Ny) by APM (APM, ) (as the structure of APM has
been investigated in some detail,t we will limit ourselves here to a concise exposition of the results
necessary for our purposes). We identify each function u(-)€S(R, U) with §,.,€ APM, [where
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8. is the Dirac measure with support at the point u(t) € U], thus embedding S(R, U) (up to an
algebraic isomorphism) in APM; and hence also in APM.
We will now define Fourier series for elements of APM. If n € APM, then by definition the map

t—{u(t), g(u)) is an element of S(R, R") for any g€ C(U). Let
p(2), g () ~ ;AM lg, Al e, A, [g, Al = M {{p (2), g (u)) e*}

and let A(p, g) be the spectrum of the a.p. map r—(u(t), g (u)). Using Riesz’s Representation
Theorem, the linearity of the map g— A, [g, ] and the condition ||p||< @, one can show that for
every A € R there exists a measure v, € frm (U) such that (v, , g(w)) = A,[g, A] for all g€ C(U).

Let A(p)={AER:|»|(U)>0} and let {c;, ¢, ...} =C.(U) be a denumerable set of
continuous functions, dense in C(U).

Theorem 2.1. If p.€ APM, then
Aw =1 A )

and so the set A () is at most denumerable.
Hence the following definition is legitimate.

Definition 2.2, If p. € APM, the at most denumerable set of real numbers A (i) is called the set of
Fourier exponents of p; the measures v Efrm(U) [v\=0 if A€A(n)] such that
(vr,g(u))=A,[g,\] for all g€C(U) are called the Fourier coefficients of . Finally, the
measure-valued series 2, v, e is called the Fourier series of y and the set Mod () = Mod (Ap))its
modulus.

Theorem 2.2. For any p € APM, there exists a sequence of functions {;};_;” C S(R, U) such that
Mod(4;)CMod(p),j=1,2,...; By (1)— (1) as j— . In addition

lim M (2) g (u; (0D} = M {f (1) <u (1), g ()}
for any function fES(R, R) and g€ C(U).

3. Henceforth P will be the subset of APM; consisting of all maps p. such that Mod (p.) C Mod (A);
this will be called the set of (generalized) controls.

Definition 3.1. The extremal problem

Jop(:))—>inf, p(-)s P -
T (N<O0 k=12 ... m Jy(u()=0k=m i1, (.1)
m 4+2,...,m

(3.2)
i (1 () = M (1) <o (D), gx @)D}, k=0, 1, ..., m)

is called the convexified a.p. Lyapunov problem for problem (1.1), (1.2), and the set D,CP of
generalized controls satisying conditions (3.2) is the set of (generalized) admissible controls.
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Using Theorem 2.2, one can prove the following theorem.

Theorem 3.1. For any solution p of problem (3.1), (3.2) there exists a sequence of admissible
controls {u;(+)};=1” C D, of problem (1.1), (1.2) such that Jo(&;(-))—Jo(r(-)) as j— <. We call
the function

L:rpm (U)X R™ X R— R, L(v,h M) = kE Med i (V)
=0

the Lagrange function of problem (3.1), (3.2).

Theorem 3.2. A necessary condition for w € D, to be a solution of problem (3.1), (3.2) is that
there exist a number Ay =0 and a vector A = (A, . . ., A,,,) ER™*, not simultaneously zero, such that
1. For a.e. tER the following minimum principle holds:

m m
. \!
i <V7 ,ZJO Mt (t) &x (u)> <H (®), k%]o Mty () 8x (u)>

2. )\kZO )\k-]k(l*()) = 0, k= 1, PN m'.

If . € D, and there exist a number Ay>0 and a vector A = (A, ..., \,,) ER™*, such that both
these conditions hold, then p is a solution of problem (3.1), (3.2).

The proof of Theorem 3.2 will be given at the end of the paper, since it relies on the notion of the
needle-shaped variation of an a.p. generalized control and on the elementary a.p. Lyapunov
problem.

4. We shall say that a sequence of functions {f,,}.ez in L;([0, a], X) (a>0) is a.p. if, for any
£>0, its set

a

ftez:sup (I fma®—fn O]t <e]

meZ

of e-translation numbers is relatively dense.

Lemma 4.1. fES(R, X) if and only if the sequence of functions {f,, } nezin L;([a, 0], X), where
fm(®)=f(t+ma) for t€[0, a], is a.p.

Definition 4.1. Let N,[0,a] be the set of measurable maps p: [0, a]—>rpm(U). A sequence
{Km }mez of elements of N[0, a] is said to be a.p., if, for any function g€ C(U), the sequence

{(erm (), 8@} mezCT L1 ([0, a], R™) is a.p.
From Lemma 4.1 we can derive the following lemma.

Lemma 4.2. p€ APM if and only if the sequence {p,,}ncz, Where p,,(t)=pn(t+ma) for
t€{0,a], in N[0, a] is a.p.
Let € APM,; and let vE N, be an a-periodic map. We define a measure for tE[0, @) and m€ Z:

L (B @) =p@E+ma), t[0,a]\[8,0 + o)
M“”*Lw»tewﬁ+w

where 9€(0,a) and a>0 is such that [9,9+a)C[0,4]. By Lemma 4.2, the sequence
{mm}mezCN;1[0,a] is a.p. Taking this into account, one can show that the sequence
{1 (+, ®)}mezC N1[0, a] is also a.p. Now consider the map n(-,a) EN; whose restriction to
[ma,(m+1)a] is p,, (¢, «). By Lemma 4.2, u(-, o) € APM,;. Clearly
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W@ 1€ U e+ 1]\ Tnaro
vit)) t= U Thma,o= U [ma-+-%ma+ 0+ a 4.1)

mezZ meZ

Rt o) =

The map wp(-,a)EAPM,, defined by (4.1) will be called a needle-shaped variation of
p(-)EAPM,. We note that the set {i(:, @)}oca<a—sC APM; is uniformly a.p. [i.e. for any
function g € C, (U) the set {{pn(-, ), g(u))}0<a<a s CS(R, R") is uniformly a.p.].

Theorem 4.1. If w€ APM,, then its needle-shaped variation u(-, ) is also in APM,, and if
2m/aA(p), then

Mod (p (-, @)) < Mod (p) (4.2)

Proof. The inclusion (-, &) € APM, was proved above. To determine A (p(-, o)), let

(t, o) ~ % vy (@) €, vy, (@) E frm (U)

[va(@) = 0 if NEA((-,@)), (a(e), g()) = M{{pn(t, @), g(u))e™™} for all g€ C(U)]. We then
deduce from (4.1) that
k—1
M@ gy =limg 3§ o g@pend+1

m=0Ty o,

1 k_jl ma—!—ﬁ (m<41)a
I=limg 3V (N o gpetdr+ | u@ngwdetar)
m=0 ma mat9+a

Consider a a-periodic map p{ € N and the map p® € APM defined on [ma, (m+ 1)a)] by
p (f) = K g0 OVE A+ —xp (D)1

R (1) = —xy @Op@)+ 0 —xp @O

where (xr,_,(+)) is the characteristic function of T, o 5. If

m, o, &

() ~ D vaeit,  u® (1) E viDeint
n

then I = (v, +v,'?, g(u)). Therefore, for any function g€ C(U)
v (@), g @) = i, + v, g @)y + M {u? (1), g W) e
Hence, using the fact that A (uV, g) = (2n/a)Z and Theorem 2.1, we see that
A, @) =AM N AW N (2n/a) Z
and since 2w/a€ Z
Mod (i (-, )) C Mod () [J Mod (u®)

Now, it follows from the definition of p® that for every function g€ C(U) and any & >0 there
exists 8 >0 such that

Eu(-), g@d, 8 CTE(u® (), g, e
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Consequently, by Favard’s Theorem [6, p. 126],

Mod ({u® (-), g (w))) < Mod (Ku (), g (1))

for any function g& C(U), which in turn implies the inclusion Mod (p?) C Mod (). This proves
(4.2).

Definition 4.2. The extremal problem
Ty () = M0 0, 3 1) g (@)D inf () = P (4.3)

is called an elementary a.p. Lyapunov problem.

Theorem 4.2. A generalized control p(-) € P is a solution of problem (4.3) if and only if, for a.e.
tER

min_ v, ka (t) g (u) > = <u(t 3 fe0) g () (4.4)

verpm(U)

Proof. The sufficiency is obvious. To prove the necessity, we may assume without loss of
generality that all the functions f,.: R— R are a.p. in Bohr’s sense. This follows from the fact that if
fx€S(R,R) and

th

0=+ \ f@ds, r>0t=R
t

then [6, p. 207] for every [>0

tl

lim (sup—— S | Fr (8) — ﬁ'l)(s)]ds) =0

hl0 \le=R

Consider the problem
IT(w(-) =M{p@®), ¢t ud}—>sup, p(-)EP (4.5)

@ (tu)= kg(l) (M ller, mll gk llew, By — Fi (2) &% (1))

Clearly, p.(+) € P is a solution of problem (4.3) if and only if it is a solution of problem (4.5), and
condition (4.4) may be written equivalently as

max (v, @ (¢, u)d = {p(h), ¢ (4 u) (4.6)

verpm (U)

Thus, we have to prove that if w(-)€ P is a solution of problem (4.5), then condition (4.6) is
satisfied for almost all & R. Choose a>0 so that 2n/a € A (i). Suppose that condition (4.6) fails to
hold. Then there exist o >0, 3ER (to fix our ideas, we assume that [¥,d+a)E[0,4]) and a
measurable function ug: [¥, 9+ a)— U such that ¢ (t, ugt)) —(n(t), (¢, u))>0for all tE[V, I + a)

using the fact that (¢, u) € R x U for ¢ (¢, u) =0, that all the measures here belong to rpm(U) for all ¢
and also using a theorem of Filippov [2]. Extend the function uy: [9, 9 + a)— U first by defining it as
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zero on [0, a]\[9, 9 + a), and then continue it to an a-periodic function on R. Denote the extended
function by vq. For every mE€ Z and tE€ T, , 5 the problem

v, ¢ (t, u)) = sup, v & rpm (U)

has a solution. Hence for any m € Z there exists a measurable function u,,,: T,, 45— U, such that
(u(t), o(t, ) <e(t, u,(t)) for tET,, 5. We now again extend the function u,,: 7}, o — U, by
defining it as zero on [ma, (m + 1)a)\T,, . » and then continuing it a-periodically to all of R. Denote
the extended function by v,,. Now consider the a-periodic function u(t) =sup,,v,,(t) and, letting
v(t) =38,(), consider the needle-shaped variation u(-, o) for w(-) defined by formula (4.1). By
Theorem 4.1 and the inclusion (4.2), n(-, @) € P. Therefore I(n(-, a))=<I(w(-)). On the other
hand, (u(t, a) — n(¢), ¢(t, u))=0 for t€R, and so, the function
t+a
t—F@) = { Qs 0)—p@), o6 u)yds, t=R
i

which is a.p. in Bohr’s sense, is non-negative. But since F(¥)=+v>0, it follows from a known
property of a.p. function in Bohr’s sense [6, p. 46] that there exists ¢=>0 (ga>«) such that every
interval [mga, (m + 1) aq] contains a point ¢,, at which F(t,,)>/3. Therefore

" F—1 (m+1‘)qa

I (o) —1 ()= }fggmn;) § (s @) —p (s), @ (5, w)y ds >
k—1

. 1
> lim 7 3 F (t,) > /36

k—oo o

i.e. I(p(-,a))>I(pn(+)). This contradiction completes the proof of Theorem 4.2.

Remark 4.1. Theorem 2.2 implies a result analogous to Theorem 3.1: if p(-) € P is a solution of
problem (4.3), then there exists a sequence {u; };,—;~ CI(U) such that du;(t)— p.(t) as j— .

Proof of Theorem 3.2. Let n(-)E D, be a solution of problem (3.1), (3.2). We may assume
without loss of generality that Jo((-)) = 0. Consider the set G = {a = (ag, . . ., ®,,): there exists
V()EP such that JO(V('))<0‘0’ Jk(v('))gak’ k= 1’ 2’ ] ml’ Jk(v()) = Oy, k=m'+ 1’
m'+2, ..., m}. Since the maps p(-)—=>J(n(+)), k=0,1, ..., mare linear, it follows that G is a
convex subset of R**™* In addition G does not contain the origin [otherwise Jo(po(-)) <0,
Je(o())=<0, k=1,2,....,m", L1 (n(-)) =0, k=m'+1, m +2, ..., m for some py(-)EP].
Applying the finite-dimensional separation theorem [7, p. 53], we find numbers A, (k=0, 1, ...,
m), not all zero, such that A\gag+ A a1 +. ..+ N0, =0foralla€G. Sincea = (1,0, ...,0)EG, it
follows that Ag= 0. Now, following the scheme of the proof for the standard Lyapunov problem [7],
we prove the validity of condition 2 of Theorem 3.2 and the minimum principle for the Lagrange
function of problem (3.1), (3.2). Theorem 4.2 may then be used to establish the minimum principle
for problem (3.1), (3.2).

The sufficiency can be verified directly.

Remark 4.2. We have devoted no attention to the question of the existence of solutions, as it
involves a compactification procedure for the space APM;—a topic which merits a special
discussion.
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CONTROL OF A PREDATOR-PREY SYSTEM WITH
INTRASPECIES COMPETITIONY

V. B. KoLmanovskirand N. 1. KorRoLEvVA
Moscow

{Received 30 October 1990)

The time-optimal control problem for a predator-prey system with intraspecies competition among the
preys is considered. The controls are pesticides or insecticides that act on the preys or the predators. The
optimal control is synthesized and the dependence of the response time on the parameters of the problem is
analysed. The time-optimal control problem for a predator-prey system without intraspecies competition
has been previously studied for the Lotka-Volterra model [1] and for the Mono modet [2].

1. STATEMENT OF THE PROBLEM
ConsipDER a controlled system modelling the interaction of two populations with intraspecies
competition [3]

X (1) == (g —aY, (1) — a5X, (7} — ey () X, (1)
Y, (1) = (@,X; (v) — ay — a;Y; (7) — agy (V) ¥y (v
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