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THE ALMOST PERIODIC LYAPUNOV PROBLEM? 
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(Received 24 October 1990) 

The necessary and sufficient conditions for optimum generalized controls (measures) in the almost periodic 

(a.p.) Lyapunov problem are presented. Some results are also presented regarding the legitimacy of 

extension and the needle-sharp variation of an almost-periodic control is constructed. Extension procedures 

for optimal control problems have been considered, e.g. in [l-3], and in a game-theoretic context in [4,5]. 

1. LET R” be a Euclidean n-space, 1 x / the norm of an element x E R” and U a compact subset of Rn. 
Let &(R, X) (I>O, XCR”) denote the collection of all almost periodic (a.p.) functions in 
Stepanov’s sense (henceforth we shall say simply “a.p. function”). We recall [6] that a locally 
integrable function f: R-+X belongs to Sr (R, X) if, for any E > 0, its set 

(E(f, E) + El (f, E)) of s-translation numbers is relatively dense. For every l>O, 

S (R, X) + S, (R, X) c Sl (R, X), SI (R, X) c S (R, X) 

so we may conf?ne our attention to S(R, X). In addition, every function fES(R,X) may be 
associated with its Fourier series, which is conveniently expressed in complex form: 

f (4 - J$ F (A) eiht7 F (h) f M (f(t) e-iht} =L lim -$ ff (t) e-i?J dt 
T-m b 

where the set A(f) i {AE R: 1 F(X) 1 >O> of Fourier exponents of f (its spectrum) is at most 
denumerable. 

A set FC S(R, X) is uniformly a.p. if, for any F > 0, the set 

is relatively dense. 
Throughout this paper Mod(A) will denote the module of a set ACR, i.e. the smallest additive 

group containing A, and, if fC S(R, X), then Mod(f) + Mod (A(~)) will denote the modulus of the 
function f. 

Let us assume that the following elements are given: the functions fkES(R, R), gkE C(U, X) 
(k=O, . . ., m’, . . ., m), a set A GR and a subset I(U) C S(R, X), called the set of (ordinary) 
controls, of functions u ( *) such that Mod (u) C Mod (A). The extremal problem 
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Jo (u (a)) -+ inf, u (w) E 1 ((1) 

Jk (u (-)) < 0, k z 1, 2, . . ., m’, JL (u (a)) = 0, k = m’ i-- 1, (1.1) 

m’ + 2,. . ,, m (Jlc b (*)) + M {fk (t) &t (U (t))}) (1.2) 

will be called the a-p. Lyapunov problem (cf. the Lyapunov problem in [7]) and the set D, of 
controls u(a) EI(U) that satisfy conditions (1.2) will be called the set of (ordinary) admissible 
controls for the problem. 

Remark 1.1. The results derived below can be extended to a broader class of problems with 
fUnCtiOnalS Jk (u (a )) k kf {gk(t, u, (t) )} , where (Pk (f, u) iS a uniformly a.p. function of t with respect 
to uEU. 

In order to formulate and investigate a convexified problem for (l.l), (1.2), we need a few 
propositions, to which we devote the next section. 

2. Let frm (I/) denote the linear space of Radon measures on R” whose supports are contained in 
U, and rpm( U) the subset of frm (U) formed by the Radon probability measures: 
NhN(R, frm(u)) the set of Lebesgue-measurable maps p: R+frm(R) such that 

II PII * eswtEf2 I t.4 I (V < CC [I p(t) 1 (U) is the variation of p(t)], N1 the subset of N formed by the 
measurable maps p,: R-+ rpm(U). Further, let B k B(R x U, R”) denote the normed linear space of 
all functions q: R x U+ R” such that the map t-+cp(1, u), uE U, is measurable, 
cp(t,-)EC(U)hC(U,R”) for a.e. tER and there exists a function L&EE,(R,R) such that 
maxuELI cp I ( t, u) 1 +,(rf for a.e. t E R. By a slight modification of the proof of the Dunford-Pettis 
Theorem [2] one can show that N= III*, where B1 k B (R x II, R) and the map I(. Ilw: IV-+ R, defined 
for uENbv 

where {rpl, ~2, . . .I is a denumerable dense set of functions in B 

defines a weak norm in N. The space (N, (1. Ilw) is separable, the set N1 C (N, I/. II,,,) is convex and 
compact and if pj, p E N1, then lim!,, 11 CLj - ~~11~ = 0 ( we write bj+ F as i+= GC) if and only if 

lim [ (p(l)- pj (it)% Cp (t, lb))dt = 0 

j4w h 

for any cpEB. 

Definition 2.1. A map FEN is said to be a.p. if, for any function gE C(U), the map 
t+(p(t), g(u)} belongs to S(R, R”). 

We denote the set of all a.p. maps k E N (CL E N1 ) by APM (APM1) (as the structure of APM has 
been investigated in some detail,t we will limit ourselves here to a concise exposition of the results 
necessary for our purposes). We identify each function u ( a) ES (R, U) with 6,(. ) E APMl [where 
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Qtj is the Dirac measure with support at the point u(t)E U], thus embedding S(R, U) (up to an 
algebraic isomorphism) in APMi and hence also in APM. 

We will now define Fourier series for elements of APM. If bf APM, then by definition the map 

g (u)} emiht} 

and let A(p,g) be the spectrum of the a.p. map t+&(r), g(u)). Using Riesz’s Representation 
Theorem, the linearity of the map g-+A&[g, h] and the condition ]lp]]< ~0, one can show that for 
every X E R there exists a measure vvx E frm (U) such that (v,, , g(u)> = A, fg, h] for all g E C(U). 

Let A(~)~{~~R:~~~~(U~>O~ and let {ci, CZ, . . .}kC,(U) be a denumerable set of 
continuous functions, dense in C(U). 

Theorem 2.1. If p E APM, then 

and so the set A (r_t) is at most denumerable. 
Hence the following definition is legitimate. 

Definition 2.2. If h E APM, the at most denumerable set of real numbers A(p) is called the set of 
Fourier exponents of CL; the measures vxE frm(U) [vX = 0 if h 6% (p)] such that 
(vx, g(u)) = A,[g, A] for all gE C(U) are called the Fourier coefficients of p. Finally, the 
measure-valued series ZhuheiAt is called the Fourier series of I_L and the set Mod(p) h Mod (A (I*)) its 
modulus. 

Theorem 2.2. For any p.EAPMl there exists a sequence of functions {u~}~=~~ CS(R, U) such that 
MOd(tij)CMOd(k),j=1,2, . . .;6,,(,)j1~(f)asjjco_Inaddition 

/in M {f (t) g (Uj (0)) = M {f (t) (p (t), g(u)>) 

foranyfunctionfES(R,R)andgfC(U). 

3. Henceforth P will be the subset of APMi consisting of all maps p such that Mod (EL) C Mod (A); 
this will be called the set of (generalized) controls. 

Definition 3. I. The extremal problem 

JO (c1 (9) + inf, u (4 E P 

Jk (w (*)) < 0, k = 1, 2, . . ., m’, Jk (p (a)) = 0, k = m’ + 1, 

nt’j-z,..., m 

(Jrc (CL to>) f M {fit ($1 (P (t), gk b)>}c k = 0, 1, . . ., m) 

(3-V 

13.2) 

is called the convexified a.p. Lyapunov problem for problem (l.l), (1.2), and the set &CR of 
generalized controls satisying conditions (3.2) is the set of (generalized) admissible controls, 
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Using Theorem 2.2, one can prove the following theorem. 

Theorem 3.1. For >any solution p of problem (3.1), (3.2) there exists a sequence of admissible 
controls {Uj( *)}j=l” CD1 of problem (l.l), (1.2) such that Jc(Uj(.))+Ja(l.L( *)) as j+ 03. We call 
the function 

L : rpm (U) x R”’ x R 3 R,, L (Y,. h, A,,) 5 $I &Jr (v) 

the Lagrange function of problem (3.1), (3.2). 

Theorem 3.2. A necessary condition for PE D2 to be a solution of problem (3.1), (3.2) is that 
there exist a number X0 2 0 and a vector X = (Xi, . . . , A,) E R”*, not simultaneously zero, such that 

1. For a.e. tE R the following minimum principle holds: 

2. &Z=O. hkJk(p(-)) = 0, k = 1, . . ., m’. 
If l.~ E D2 and there exist a number A,>0 and a vector A = (A,, . . . , A,) E R”*, such that both 

these conditions hold, then TV, is a solution of problem (3.1), (3.2). 
The proof of Theorem 3.2 will be given at the end of the paper, since it relies on the notion of the 

needle-shaped variation of an a.p. generalized control and on the elementary a.p. Lyapunov 
problem. 

4. We shall say that a sequence of functions {fm}mEZ in L,([O, a],X) (a>O) is a.p. if, for any 
E>O, its set 

{z~z::~~~l~~+~(t)-i,(~)l~~<E} 
0 

of e-translation numbers is relatively dense. 

Lemma 4.1. fES(R, X) if and only if the sequence of functions {fm}mEZ in LI([a, 01, X), where 
fm(t)kf(t+ma) for tE[O,a], is a.p. 

Definition 4.1. Let Nr[O, a] be the set of measurable maps t.r,: [0, a]+rpm(U). A sequence 

{&?I )rnEZ of elements of N1 [0, a] is said to be a.p., if, for any function g E C(U), the sequence 

{(km(*), ~(u))),~zCLI(]O~ 4 R”) is a.p. 
From Lemma 4.1 we can derive the following lemma. 

Lemma 4.2. FEAPM if and only if the sequence {t.~,},,=~, where p,,(t) s k(t+ ma) for 
tE [0, a], in IV1 [0, a] is a.p. 

Let F E APMl and let w E N1 be an a-periodic map. We define a measure for t E [0, a] and m E 2 : 

where 6~ (0, a) and a>0 is such that [6,6 + IX) C [0, a]. By Lemma 4.2, the sequence 

{lJ+n 1mE.z CNi [0, a] is a.p. Taking this into account, one can show that the sequence 

{I&(*, a)] mEZC Ni [0, a] is also a.p. Now consider the map t.~( *, a) ENI whose restriction to 
[ma,(m+ l)a] is pm(t, a). By Lemma 4.2, l.~( a, a)EAPMi. Clearly 
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CL (97 t= u [ma,@+ W]\L,a,d 
mfzz 

P 6 4 = y @), tE U Tm,a,o* 
rnEZ ,!A ’ ma -L 6, mu + 6 + a] (4.1) 

The map t.~(. , CY) E APMi , defined by (4.1) will be called a needle-shaped variation of 
l.r_(*)EAPMi. We note that the set {~(*,(~)}a<~<~_~ CAPMi is uniformly a.p. [i.e. for any 
functiongEC,(U) theset {(~(.,a),g(u))}o<u~n_sCS(R, R") isuniformlya.p.]. 

Theorem 4.1. If p E APMi , then its needle-shaped variation k(. , a) is also in APMi , and if 
2nlah( k), then 

Mod (u (. 34) c Mod (4 (4.2) 

Proof. The inclusion t.~ ( - , a) E APMi was proved above. To determine A (u. ( * , a) ), let 

p (t, a) - F vh (a) eiht, va (a) E frm (U) 

]vk(o) = 0 if A4:A(k(.,o)), (vh(o), g(u)) = M{(p(t, a), g(u))e-‘“‘1 for 
deduce from (4.1) that 

k-l 

all gEC(U)]. We then 

<VA (a), g(u)> = lim -!- 
k-+00 ka c s (v (t), g (u)) e+t at + I 

m=o Tn,, a, 6 

k-l ma+6 (nl+m 

I A jIr~&]z ( S (p(t), g(u)) e-ihfdt + S (cL (t), g (4) e-iht dt) 
m=o ma ma+d+a 

Consider a u-periodic map CL(~) E N and the map p c2)~ APM defined on [ma, (m + l)a] by 

$1) (t) * x T,,,, #j (t) v (t) + (1 - XT, c( ,? (t)) r 

p(2) (t) 5 -_x T,,,*,* (t) CL (t) + (1 - x,_‘, * (t)) rl ? 1 

where (xr,,,,,( a)) is the characteristic function of T,,,+ . If 

u (t) - z vheiht, y(2) (t) - B v%)eat 

then I = (vx + r+,(2), g(u)). Therefore, for any function g E C(U) 

<vn (a), g (u)? = (% + v?‘, g (u)> + M {(pL’1’ (0, g (u)> e-iht}\ 

Hence, using the fact that A&(i), g) = (2nla)Z and Theorem 2.1, we see that 

* (u ( - 3 a)) = A @) f-l A (p’“‘) i-7 (24~) 2 

and since 2da E Z 

h!od (p (. , a)) c Mod (CL) U Mod ($“‘) 

Now, it follows from the definition of t_~ c2) that for every function gE C(U) and any E > 0 there 
exists 6 > 0 such that 

E ((u (.)y g (u)>, 6) c E (QJ” (.), g (u)>, s) 
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Consequently, by Favard’s Theorem [6, p. 1261, 

Mod ((p(“’ (.)t 6 (u)>) C_ Mod (<u (.)T g (u)>) 

for any function gE C(U), which in turn implies the inclusion Mod (u2) C Mod (k). This proves 
(4.2). 

Definition 4.2. The extremal problem 

is called an elementary a.p. Lyapunov problem. 

Theorem 4.2. A generalized control p( .) E P is a solution of problem (4.3) if and only if, for a.e. 
tER 

(4.4) 

Proof. The sufficiency is obvious. To prove the necessity, we may assume without loss of 
generality that all the functions fk: R + R are a.p. in Bohr’s sense. This follows from the fact that if 
fkE-S(R, R) and 

ti$ 

j!?(t) e -+ 1 fr (a) ds, h > 0, t E R 
t 

then [6, p. 2071 for every I>0 

Consider the problem 

1 (u (*)) * M {<u (t), cp (k u))I * sup, P (a) f? p 

k C(R,R)l(dkIIC(U,R)-f~(t)gk(U)) II 

(45) 

Clearly, )I ( *) E P is a solution of problem (4.3) if and only if it is a solution of problem (4.5), and 
condition (4.4) may be written equivalently as 

Thus, we have to prove that if p( *)E P is a solution of problem (4.5), then condition (4.6) is 
satisfied for almost all t E R. Choose a > 0 so that 21r/a E A (k). Suppose that condition (4.6) fails to 
hold. Then there exist a>O, 6E R (to fix our ideas, we assume that [6,6 + o) E [0, a]) and a 
measurable function u. : [6,6 + a) ~Usuchthatcp(t,uot))-(~(t),cp(t,u))>OforalltE[6,6+a) 
using the fact that (t, U) E R x U for cp (t, u) > 0, that all the measures here belong to rpm (19) for all t 

and also using a theorem of Filippov [2]. Extend the function uo: [6,6 + a)+ U first by defining it as 
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zero on [0, a]\[*, 6 + a), and then continue it to an u-periodic function on R. Denote the extended 
function by v. . For every m E 2 and t E T,,++ the problem 

<v, cp (Z, u)> -+ sup, v E rpm (u) 

has a solution. Hence for any m E Z there exists a measurable function u, : Tm+,*-+ U, such that 

(u.(t), c~(t, u)>s’P(~, urn(t)) for E Tm+,a. We now again extend the function u,: T,,,u,9+ U, by 
defining it as zero on [mu, (m + l)a]\ T,,,+,.,+ and then continuing it u-periodically to all of R. Denote 

the extended function by v,. Now consider the u-periodic function u(t) k supmvm (t) and, letting 
v(t) e 6,(,), consider the needle-shaped variation p ( * , CY) for u ( a) defined by formula (4.1). By 
Theorem 4.1 and the inclusion (4.2), p(.,cx)EP. Therefore Z(u(*,ol))aZ(l.~(*)). On the other 
hand, (p(t, a) - p(t), cp(t, u))zO for tE R, and so, the function 

t+a. 

t - F (t) + 1 (p (s, a) - u (a), cp (s, u)) ds, t E R 
t 

which is a.p. in Bohr’s sense, is non-negative. But since F(6) +r>O, it follows from a known 
property of a.p. function in Bohr’s sense [6, p. 461 that there exists q>O (qu>ol) such that every 
interval [mqu, (m + 1) uq] contains a point t,,, at which F(t,) > $3. Therefore 

k-l 

> lim1 
k-roe kqa c F (tm) > ?/%a 

m=o 

i.e. I@( -, 0~)) >I@( a)). This contradiction completes the proof of Theorem 4.2. 

Remark 4.1. Theorem 2.2 implies a result analogous to Theorem 3.1: if p,(a) E P is a solution of 
problem (4.3), then there exists a sequence {u~}~,~~ CZ(U) such that 6uj(t)‘p(t) asj-+ m. 

Proof of Theorem 3.2. Let p,( -) E D2 be a solution of problem (3.1), (3.2). We may assume 
without loss of generality that .Zo(~( .)) = 0. Consider the set G 6 {cx = (OLD, . . . , a,): there exists 
v(.)EP such that .Zo(v(~))<olo, .Zk(v(-))s~k, k= 1, 2, . . ., m’, Jk(v(.))=ak, k=m’+l, 
m’+2,..., m}. Since the maps p( -)+Zk(p( ‘)), k = 0, 1, . . . , m are linear, it follows that G is a 
convex subset of R(l+m)*. In addition G does not contain the origin [otherwise .Zo(p,O( * )) CO, 
.fk(f.ho(‘))so, k=l, 2, . . . . m’,Jk(m(.))=O, k=m’+l,m’+2, . . . . mforsomet~,~(-)EP]. 
Applying the finite-dimensional separation theorem [7, p. 531, we find numbers hk (k = 0, 1, . . . , 
m),notallzero,suchthathocwo+h~cw~+...+X,ol,~OforallolEG.Sincea=(1,0,...,O)EG,it 
follows that X0 2 0. Now, following the scheme of the proof for the standard Lyapunov problem [7], 
we prove the validity of condition 2 of Theorem 3.2 and the minimum principle for the Lagrange 
function of problem (3.1), (3.2). Theorem 4.2 may then be used to establish the minimum principle 
for problem (3.1), (3.2). 

The sufficiency can be verified directly. 

Remark 4.2. We have devoted no attention to the question of the existence of solutions, as it 
involves a compactification procedure for the space APMi-a topic which merits a special 
discussion. 
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CONTROL OF A PREDATOR-PREY SYSTEM WITH 
INTRASPECIES COMPETITION? 

V. B. KOLMANOVSKII and N. I. KOROLEVA 

Moscow 
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The time-optimal control problem for a predator-prey system with intraspecies competition among the 

preys is considered. The controls are pesticides or insecticides that act on the preys or the predators. The 

optimal control is synthesized and the dependence of the response time on the parameters of the problem is 

analysed. The time-optimal control problem for a predator-prey system without intraspecies competition 

has been previously studied for the Lotka-Volterra model [lI and for the Mono model [2]. 

1. STATEMENT OF THE PROBLEM 

CONSIDER a controlled system modelling the interaction of two populations with intraspecies 
competition [3] 

x; (4 == (a, -azY1 (x) - a,X, (z) - a& (T)) x, (z) 

Y,’ W = (a& (4 - a4 - a,Y, (x) - asul (t)> Y, (4 
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